MATH 504 HOMEWORK 5

Due Monday, November 5.

Problem 1. Let M be a countable transitive model of ZFC and $Add(\omega, 1)$ be the poset of all functions $f: dom(f) \to \{0,1\}$, where dom(f) is a finite subset of ω . Let G be $Add(\omega, 1)$ -generic filter over M. As we did in class, define $f^* = \bigcup G$ and $a = \{n \mid f^*(n) = 0\}$. Recall that we proved in class that f^* is a total function with domain ω .

- (1) Find two different $Add(\omega, 1)$ -names in M for a, say σ and τ , such that $\sigma_G = \tau_G = a$.
- (2) Show that in M[G], a is an unbounded subset of ω .

Problem 2. Let M be a countable transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that G is a \mathbb{P} -generic filter over M and $p \in G$.

- (1) Suppose that $D \subset \mathbb{P}$ is such that for every $q \leq p$, there is $r \leq q$ with $r \in D$. Show that $G \cap D \neq \emptyset$. Such a set D is called dense below p.
- (2) Let $A \subset \mathbb{P}$ be an antichain such that for every $q \in A$, $q \leq p$, and for every $r \leq p$, there is $q \in A$ such that r, q are compatible i.e. they have a common extension. Show that $G \cap A \neq \emptyset$. Such a set A is called a maximal antichain below p.

Problem 3. Let M be a countable transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that $G \subset \mathbb{P}$ is a filter. A set $D \subset \mathbb{P}$ is called open dense if it is dense and whenever $q \leq p$ and $p \in D$, we have that $q \in D$. Show that G is generic if and only if G meets every open dense subset of \mathbb{P} .

Problem 4. Let M be a countable transitive model of ZFC and $\mathbb{P} \in$ M be a poset. Suppose that σ and τ are two \mathbb{P} -names in M, such that $dom(\sigma), dom(\tau) \subset \{\check{n} \mid n < \omega\}.$ Let

$$\pi = \{ \langle \check{n}, p \rangle \mid (\exists q, r) (p \le q \land p \le r \land \langle \check{n}, q \rangle \in \sigma \land \langle \check{n}, r \rangle \in \tau) \}.$$

Show that $\pi_G = \tau_G \cap \sigma_G$ for any generic filter G over M.

Problem 5. Let M be a countable transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that σ is a \mathbb{P} -name in M, such that $\operatorname{dom}(\sigma) \subset \{\check{n} \mid n < \omega\}$. Let

$$\pi = \{ \langle \check{n}, p \rangle \mid (\forall q \in \mathbb{P}) (\langle \check{n}, q \rangle \in \sigma \to q \perp p) \}.$$

Show that $\pi_G = \omega \setminus \sigma_G$ for any generic filter G over M.

Hint: show that $\{r \mid \exists p \geq r(\langle \check{n}, p \rangle \in \pi \vee \langle \check{n}, p \rangle \in \sigma)\}$ is dense.

Problem 6. Let M be a countable transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that τ is a \mathbb{P} -name in M. Let

$$\pi = \{ \langle \nu, p \rangle \mid \exists \langle \sigma, q \rangle \in \tau \exists r (p \le r \land p \le q \land \langle \nu, r \rangle \in \sigma) \}.$$

Show that $\pi_G = \bigcup \tau_G$ for any generic filter G over M.